Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more informationCBT3245AD-Q100
Octal bus switch
The CBT3245A-Q100 is an 8-pole, single-throw bus switch. The device features a single output enable input (OE) that controls eight switch channels. The switches are disabled when (OE) is HIGH. This device is fully specified for partial power down applications using IOFF.
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 3) and is suitable for use in automotive applications.
Features and benefits
Automotive product qualification in accordance with AEC-Q100 (Grade 3)
Specified from -40 °C to +85 °C
5 Ω switch connection between two ports
Direct interface with TTL levels
Overvoltage tolerant control inputs to 5.5 V
IOFF circuitry provides partial Power-down mode operation
Latch-up performance exceeds 500 mA per JESD 78 Class II Level B
ESD protection:
MIL-STD-883, method 3015 exceeds 2000 V
HBM JESD22-A114F exceeds 2000 V
MM JESD22-A115B exceeds 150 V (C = 200 pF, R = 0 Ω)
DHVQFN package with Side-Wettable Flanks enabling Automatic Optical Inspection (AOI) of solder joints
封装
下表中的所有产品型号均已停产 。
型号 | 可订购的器件编号,(订购码(12NC)) | 状态 | 标示 | 封装 | 外形图 | 回流焊/波峰焊 | 包装 |
---|---|---|---|---|---|---|---|
CBT3245AD-Q100 | CBT3245AD-Q100J (935300473118) |
Obsolete | no package information |
Series
文档 (3)
文件名称 | 标题 | 类型 | 日期 |
---|---|---|---|
CBT3245A_Q100 | Octal bus switch | Data sheet | 2022-03-21 |
AN90010 | Pin FMEA for CBT(D) family | Application note | 2019-10-28 |
cbt3245a | CBT3245A IBIS model | IBIS model | 2019-01-09 |
支持
如果您需要设计/技术支持,请告知我们并填写 应答表 我们会尽快回复您。
模型
文件名称 | 标题 | 类型 | 日期 |
---|---|---|---|
cbt3245a | CBT3245A IBIS model | IBIS model | 2019-01-09 |
How does it work?
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.